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ABSTRACT

An investigation related to the use of linear indicial
functions in the time and frequency domains, enabling

one to derive the proper aerodynamic loads as to study
the subcritical response and flutter of swept lifting

surfaces, respectively, of the open/closed loop
aeroelastic system is presented. The expressions of the

lift and aerodynamic moment in the frequency domain
are given in terms of the Theodorsen's function, while,
in the time domain, these are obtained directly with the

help of the Wagner's function. Closed form solutions of
aerodynamic derivatives are obtained, graphical

representations are supplied and conclusions and
prospects for further developments are outlined.

NOMENCLATURE

a, Dimensionless elastic axis position measured

from the midchord, positive aft

c, Chord length of wing, normal to the elastic axis,

2b,,

CL,_, Lift-curve slope

fh, fa Plunging and pitching deflection functions

h, htj Plunging displacement and its amplitude,

respectively

I,_ Mass moment of inertia per unit length of wing

l Wing semi-span measured along the midchord
line

Ih Dimensionless aerodynamic lift, Lhb/mU _
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Lb,l b Overpressure signature of the N-wave shock

pulse and its dimensionless counterpart,

Lbb/mU _ , respectively

m Airfoil mass per unit length

m a Dimensionless aerodynamic moment, M,_bZ/Ic, U_

N Load Factor, h"/g

P,,,fo,, Peak reflected pressure in excess and its

dimensionless value P,,b/mU_ , respectively

r Shock pulse length factor

ra Dimensionless radius of gyration, (I_,/mbZJ '2

s,_" Laplace transform variable and operator

Sa, Z,_ Static unbalance about the elastic axis and its

dimensionless counterpart, S,_/mb

t,'c o Time variables

U, U,, Freestream speed and its component normal to

the elastic axis

V Dimensionless free-stream speed, U/bco,_

x Coordinate parallel to freestream direction
.7 Chordwise coordinate normal to the elastic axis

y Coordinate perpendicular in the freestreem direction

7 Spanwise coordinate along the elastic axis

w Downwash velocity
z Transverse normal coordinate to the

midplane of the wing

Z Vertical displacement in z direction

a, a o Twist angle about the pitch axis and its

amplitude, respectively

_h,_,_ Structural damping ratio in plunging, G/2mCOh

and in pitching, c,_/21ao G

7?

A

/1

¢

Dimensionless coordinate along the wing span, y/l

Spanwise rate of change of twist
Swept angle (positive for swept back)

Airfoil/air mass ratio, m/zrpb 2

Dimensionless plunge coordinate, h/b
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P

O"

7

"L'p

o),k.

Air density

Spanwise rate of change of bending

Dimensionless time, U,t/b,

Dimensionless positive phase duration of the

pulse, measured from the time of the arrival

Circular and reduced frequencies, o)b /U,,

o_h,waUncoupled frequency in plunging,(Kh/m) 112

and pitching, (K_/1 o ),,2

Plunging-pitching frequency ratio, ogh/_o .

Subscript

( " )c Circulatory terms of lift and aerodynamic
moment

( • ),cNon-circulatory terms of lift and aerodynamic
moment

(.), Quantity normal to the elastic axis

A( " ) Quantity associated with the swept wing

Superscript

^

( ) Variables in Laplace transformed space

( ), ( • ) Derivatives with respect to the time t, and

the dimensionless time z, respectively

INTRODUCTION

In this paper, the linear indicial functions in the time

and frequency domains are used to determine the

corresponding unsteady aerodynamic derivatives for
swept lifting surfaces. Such a treatment of the problem

enables one to approach either the open/closed loop

aeroelastic response in the subcritical flight speed

regime to arbitrary time-dependent external excitations

(such as e.g. gusts, airblasts due to explosions or sonic-
booms), or the flutter instability of actively

controlled/uncontrolled swept wings. Moreover, this

study is intended to extend its scope as to include, by an
analogous procedure, the case of the various flight

speed regimes, i.e. in addition to the incompressible

one, also the compressible, transonic (within the

linearized concept of indicial functions), and

supersonic.

The representations of the aeroelastic governing

equations in the time-domain is useful toward the

approach of both the subcritical aeroelastic response of

the actively controlled/uncontrolled swept aircraft

wings. In other worlds, in this framework, the

open/closed loops dynamic response of aeroelastic

systems can be analyzed.

The unsteady aerodynamic lift and moment in

incompressible flight speed regime are expressed for

the swept aircraft wing in the time and the frequency

domains by using the Wagner and Theodorsen

functions, respectively. For the response of dynamic

systems it is only necessary to express the lift and
moment via the indicial Wagner's function. For the

approach of the flutter problem, the Theodorsen's
function helps the conversion of the expressions of both

the aerodynamic loads and the unsteady aerodynamic

derivatives in the frequency domain. Herein the case of

a 2-D lifting surface, including the plunging and

pitching degrees of freedoms is considered•

PRELIMINARIES

In the next developments an extensive use of variables

in both the time and frequency domains will occur. As
shown in Edwards, Ashley & Breakwell 3, for zero

initial conditions, the aeroelastic equations can be

converted from the time to the frequency domain via a

Laplace transform. This results in the possibility of

using the correspondence s ---) ik,, where s and k, are

the Laplace variable and the reduced frequency,

respectively. The Laplace transform operator .Z' is
defined as:

,,_( . )=_(.)e-"¢d'_. (I)

In this sense, the Wagner's function _('r) is connected

with Theodorsen's, function C(k,) via Laplace

transform as:

-- -iknfC(k.) F(k.)+ia(k.)__¢(r) e dz=dP(ik.),
ik. ik.

and vice-versa:

(2)

-1

_(z') = ,,T {C(k.)/ik.}, Re(ik.)> 0. (3)

and having in view the correspondence s _-_ ik, we can

also write:

*(ik.)ik_.._s IT_O(r)e-'_dz = *(s), (4)

Using this relationship, it is possible to obtain the full
expression of unsteady aerodynamic coefficients in
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termsof the Theodorsen's function C(k.) and its

circulatory components F(k.) and G(k.).

It is interesting to note that the reduced frequency

parameter k. for swept and for straight wings coincide:

where h - h(_;,t), a --a(y,t) are the displacements in

plunging and pitching, respectively, and the origin of
the 2 axis coincides with the elastic center, the

downwash velocity w normal to the lifting surface
becomes:

k. - rob. _ cobcosA _wb=k ' (5)
U. UcosA U

iox = ik.z . (6)

This implies that the indicial Wagner's function O(z')

remains invariant to any change of the sweep angle.

ANALYTICAL DEVELOPMENTS

For swept wings, the total lift per unit span, can be

expressed in the form:

A Lh(-Y,t)=ALc(y,t)+AL,,.,(Y,t)

+AL,c:(y,t)+AL,,.3(Y,t)" (7)

where the indices c and nc identify the various

contributions associated with the circulatory and
noncirculatory terms respectively.

Using similar notations, the total moment per unit span
about the elastic axis is:

AMa (Y,t)=AM_ (y,t)+ ^M,c,(y,t)

+aM,,.z(y,t)+^M,c3(y,t)+AMa(y,t ), (8)

^ M a (y,t) being associated with the apparent moment

of inertia. Herein the lift is positive in the negative z
direction (considered positive downward), while the
moment is positive nose up. For the sake of
convenience, herein the plunging coordinate is positive

when is downward (see Fig. 2).

Using the expression of the lift (Eq. (7)), the equation
for the moment, Eq. (8), can be cast as:

n M_(y,t)=-(1/2 + a.)b. AL,.(y,t)-a.b. AL._,(y,t)

+ (1/2 - a. )b. ^ C.,.2 (y,t)+AM.c 3 (-y,t)

+^ M, (7, t). (9)

w(x, y,t)=w('_, y,t)=oTZ/o3t +U=OZ/O2. (11)

In conjunction with the definition of Z, (Eq. 10), Eq.
(11 ) becomes:

w(Y, y,t):/_ + 26_ + U _cosA

+ U (Oh�off + 2o-_a/off)sin A. (12)

where the superposed dots denote the derivatives with

respect to time t. The quantity in Eq. (12) undescored

by a solid line is usually discarded in the specialized
literature (see Bisplinghff, Ashley & Halfman2), as

being related with the wing camber effect (see also
Flax ). However, herein this quantity will be included.

The in-plane coordinate 2 normal to the elastic axis

(see Fig. 1) can be expressed as:

2=b,,(l/2-a,,). (13)

Consequently, using the dimensionless time'r(-- U.t/b. )

Eq. (12) becomes:

h' + 3h tanAw(Y,y,z):U,, b,---_-+a off.

+(l/2-a,, a'+b --tanA.o_ , (14)

where(4---
In the following sections, the unsteady aerodynamic

loads in incompressible flow can be obtained in time
and, with the use of the Laplace transform space, in the

frequency domain.

Unsteady Aerodynamic Loads in Incompressible
Flo._.._w

Time Domain

Basic Considerations

Expressing the vertical displacement Z of a point on the
center line of the wing as, (Fig.2):

Z(2, _7,t)= h + _a, (10)

The circulatory components of the lift and moment
expressed in term of Wagner's indicial function _0('r)

(called also herediO' function) obtained in the time
domain are:

3
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AL./ + CLo

(_; ):22AM_(y,V)= +a,, L,, b,,pU,,

-= Oz°

(15)

(16)

As concern the aerodynamic non-circulatory

components, using the dimensionless time r these are

expressed as:

^L,,c,(y,'r)=-l CL,_.pU2.,[h'-a.b,,d'], (17a)

½ 2 ,a L,,c2 (_;,'r)= - CL,_°pU,,b,,ot, (17b)

^L.c3(Y,_:)=-I cL_,.pU2.b_, tanA r +1 +'SrZ

+ tSr 00" tan A] + ICe _ -U2b 3
off J 2 "/" " "

+ Sr 0k tan A / .
off 3

tan r +

(17 C)

The moments induced by the non-circulatory

components of lift are expressed using the
dimensionless time as:

AM,,c,(y,'r)=l cL_.pU2[h"-a,,b,,ot"]a,,b,,, (18a)

AM"c2(Y"r)=-ICL_'2 "PU'_b'_(1-a_2 ,, ):t' , (18b)

231 nA
a M,,c3('_,r)=-2CL_,.pU,,b,, -_ Ata

1 2 3 ff "+-_CL_,pU, b,a . tanA (6, +l)._----+6r ).
bn

+ar-gtanA - CLoPU b'.

tanAI(tSr +l)'A--_"+t_' _-tanA]/9 , (18c)

--2-,2 A,^M.(y,r)=- pC_ v.u.a . (18d)

as in the following ones, the terms affected by the tracer

t_ identify those generated by the last term in the

expression of the downwash velocity (Eq. (12)), (term
underscored by a solid line). In general these terms are

discarded being considered negligibly small (see

Bisplinghoff et al. 2, and Flax4), in what case S, = 0,

otherwise S_ = I. Replacement of Eqs. (15) and (17) in

Eq. (7) and of Eqs. (16) and (18) into Eq. (8), results in

the unsteady lift and aerodynamic moment expressed in

the time domain. Concerning the circulatory parts of the
lift and aerodynamic moment, Eqs. (15) and (16), these

can be explicitly determined by transforming these
expressions in the Laplace domain using the
relationship between the Laplace transform of the

Wagner and Theodorsen functions, namely

C(-is)Is = _/'(_(z)) = qb(s), and afterwards inverting

back the obtained expressions in the temporal space.

Alternatively, in order to ease the computations, the

available approximate expressions for _('r) (see

Edwards et al. 3) can be used in the Laplace transform

process.
The expressions of lift and aerodynamic moment in the

time domain, ^ Lh (y, r) and AM,_ (y,'r) can be used to

determine the subcritical aeroelastic response of swept

wings. However, when the aeroelastic response of
lifting surface to time-dependent external pulses, is
needed, the unsteady aerodynamic loads in the time

domain,^ L h and A Ma, have to be supplemented by

the ones corresponding to above mentioned pulses.
This will be considered in the next developments and a

simplified illustration of the capability of this method
will be given in this work.

Laplace Transformed Space

Several preliminaries related to Laplace transform

applied to aeroelastic quantities will be given next.

A{L_(y,s_M_(y,s)}=

=ff {AL_(y,Z_A M_(y,z)}e-'_dz. (19)

We will express the Wagner's function and the
plunging and pitching degrees of freedom in the

Laplace transformed space as:

¢(t fz_ O(s ) h(t )_'_ f_(s ) ot(t )_zT_&(s )

where the spanwise rates of change of bending and Considering zero initial condition, Laplace Transformed

twist, cr and ,q., respectively, are expressed as counterparts of Eqs. (15) and (16) are."
a = cgh/off and A. = &t/off. In these equations as well

4
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_ 212i^Lc(y,s ) CLab,,pU,, --+ sc2+ so" tan A +
=- s bn

I 1 IsZ&+b,,s_.tanA))_(s) (20,+ -- a.

_-+ s& + scr tan A

+ 2 "

Herein, and in the next expressions, the plunging and
pitching motions in the Laplace domain are expressed

as /] = h(y,s)and c_ -a(7,s).

The Laplace transformed counterpart of Eqs. (17) can
be expressed as:

_ i 2 2 [/__ anbnt_],
h Lnc, (Y, s)= -_ CLa" pU ns (22 a)

(7,s)=-_CL_.PU_.b°s_,L.c2 (22 b)A

^<_,(7,s)=- C_o.pU_.b_.tanA l+a_)__,+,_Z
On

+S.-_tanA]+lcL,_.pU_b3tanA[(l+S_)-_s

+ 8_ _9_ tan A]. (22 C)

J

The Laplace transformed counterpart of Eqs. (18) can
be written as:

AM...,(7, s)=lcL_.pU2s2[£-a.b.d@.b., (23a)

AM""z(7's)=-I cLa2"PU'_b'_(I(2 -a,, _t_ , (23b)

M.c 3 (y, s)= _1 CL_. pU2b 3 1 _ tan A^ 2

+-CL,_.pU,,b,,a,, tanA 6_ +1 s+¢5,_.+2

+ _ ¢9°" tan A] Ioff (1 2/-_CL_.pUZb4. +a. tanA

[ (6r +i)b-@ s +'r 0& tanA]off ' (23 c)

_6 t2rr2 2 ^^M,,(y,s)=- pCL_v.tJ.s a. (23 d)

The equations of lift and aerodynamic moment help us
to perform the conversion in the frequency domain.
This will be done in the next section.

Frequency Domain

Upon replacing s _ ik, in Eqs. (22) and (23); using the

relationship between Laplace transform of Wagner and
Theodorsen's functions (Eq. (2)); representing the time

dependence of displacement quantities as:

o_(7,r)= f,_(y_(r,k,)= fa(7)t_o e_'"r , (24a)

h(y,"c)= fh(Y)h(r,k,)= fh(7)hoe ""_ , (24b)

and expressing:

^ L_(y, k.,v)=^ T_(y, k. )e""_ , (25a)

^ M_ (y, ko, r)=^ M-o (7,/¢. )e*'"', (25b)

the equations for the unsteady lift and moment
amplitudes can be expressed in the frequency domain.

These expressions that coincide with the ones obtained
differently in Barmby et al), can be used in the flutter

analysis of swept aircraft wings.

In this analysis f,_ (7) and f_ (7) are chosen to be the

decoupled eigenmodes in plunging and twisting of the
counterpart structure, and are determined as to fulfill

identically the boundary conditions. Using the spanwise

dimensionless coordinate 7"/= y/l, these are expressed

as:

sinh fll + sin flj
fh (7) = Fh (7"/)= C, ((cos fl,r/- cosh fl,r/) cosh /31+ /3,COS

+ sinh fl_r/- sin fl,r/) (26)

f_ (_;)= F,, (r/) = Cz sin flzr/, (27)

where for the first bending and torsion we have

fll =0-5969rc and f12 =n'/2.

The constants C_ and C a are chosen as to normalize

fh (Y) and f,_ (7), and so to get the unitary maximum

deflection at the wing tip. The uncoupled first bending

and torsion mode shapes needed for the evaluations of
the aerodynamic lift and moment are shown in Fig. 3.

The following expressions will be useful in the next
developments:

z'- °_'_ - oYo(y)_ .. ,,.,
off_ off 6t°tg"e ' (28)

5
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"- c92h - °3fh(Y)h,,ik.ei_"_ (29)
cr of_ 037

_" - °_2fa (Y)_0e i'"r , (30)

cgff ,9 2fh (Y) hoei,._ "
off- off z (31)

Unsteady Aerodynamic Derivatives in the
Frequency Domain

At this point, a careful inspection of Eqs. (7) - (8),
suggests the following representations for the lift and

aerodynamic moment:

/ h'
ALh(Y,k.,v)= pU2.2b, k.Hl--+k.H_a'+k_H_a

bll "

+k2H. h+ H a'+ H. (32)
n b _

AM_(y,k.,r)= pU,_2b k.A,--+k.A2a +k,,A3a
b n

+ k 2A4 .h__+A,a. + h" )
A 6 -- . (33)

t_. " b.

Herein the dimensionless unsteady aerodynamic

coefficients H_, A_ have been introduced, and k_ has

been included as to render the quantities in brackets

nondimensional. Herein, b. is the half-chord of the

airfoil and U. is the component of the flow speed, both

normal to the elastic axis.

In a simplified context, such a mixed form of the lift
and moment was used in Simiu & Scanlan 9, and

Scanlan 8. The unsteady aerodynamic derivatives for

swept wings are obtainable from the previous equations
of lift and aerodynamic moment, by assuming harmonic

time dependence of displacements quantities. In such a
way, the frequency domain counterpart of Eqs. (32)-
(33), expressed in compact form, becomes:

A-Lh(_,k.,T)= pU2kZb.(_Ll +aoL2 ), (34)

AM_(y,k.,z)= pU.k.b._b. , +aoM2 . (35)

Herein, the unsteady aerodynamic complex coefficients
L, and Mi can be expressed as:

LI =iI21, +I_I4 ; Lz =ii212 +/-)3 (36)

M 1 =i.4_ +'_4; M2 =iA2 +'_3- (37)

6
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where, for the sake of convenience, the unsteady
aerodynamic derivative are written as:

1711=H,;IBIz = H2;/43 =(H 3 - H5);,/4 , =(H 4 -H6),

'41 = A, ;'42 = A2 ;A3 = (A3 - A_ ); '44 = (A4 - A6 ). (38)

The unsteady aerodynamic derivatives in the frequency
domain for swept wing will be obtained from the

following equations, expressed in terms of Wagner's
function _(ik.). Comparing Eqs. (36) with that

expressing the lift in the frequency domain, yields:

1 I Ccc_ [-

"b n tanAL(t5 + l)_-_-_-I_ikLl=-2 CLa°fh 2 k_ oy.

+6_b_tanA +----_*(ik. kJh-ib . tanA
k n

(39 a)

L 2 = - --" _[ik. iif_ tan A

+lcLaa._2 tanA[(_+l)--_ik_+S_bn-_f_-tanA],kn off

b. Ofa tanA- CLaa_f _ 2 k. f_"-6_ c_°k_ _

(39 b)
From a similar analysis, comparing the Eqs. (39) with

that expressing the aerodynamic moment in frequency
domain, yields:

Ml=-CLc_"(l+a_(iknlk_fh-ib_, tanA]k__2

-1CLa. anf h 1CLc_" a b
+ 2 k_ " " tanA

(_r +1) ik_ -, o_o_ ----_--T-2tan A , (40 a)

M_= kn _2 " (ik.)

Iifa-ll-a_Iknfa-ib.-_tanA)]+76C_a. fa

(1 |_ __"_1 C/.a.. +/2C_a. anfa2 1 CLa Ofa_ . bn
-an)2 kn ifa 2 k2n off

tan A I--- --" b_|-+a_ tanA
-_an) 2 k_ 18

0 :f,_ A]. (40
[(8_+l)_Tik,,+_b,--_--2tan J b)



UsinginEqs(39)-(40)equations(2),separatingthereal
andtheimaginarypartsoftheaboveexpressions,the
unsteadyaerodynamicderivativesresultas:

= . _an (kn)fa+ fa+'_f.k,,

+b"-_. tana(2G(k")(l-a")-2a"(l+_')]l'_, k. ,2

"_ k. k. t.2

+_-_z _a tanA(F(k'(l-an)+lark.off,

1 b2 c)2fa 2 ]"-a.a. 2/<z _2 tan A

( G(k")fhk. b. k 2tanA [ F(k,, ) _.__D.h/-}4 = Ct.a. lfh +

+,rLb a2fh- "))
_tanA (41)

2"_-

/q = Cta"k._ 2((l+an )F(k.)fh +b.--_Ttan A

_2=CI.a. (¢an 1 +[l+a n2,.,,-+
-( a2"-I) 2F(k")f_ +b_ OfatanAo_

;3 =_((l + 2an)2F(kn)fa +(4a2-1)U(kn)knfa

1 2 + -_--tanA((1-4a}+( 202 +-_.fa b. -_ )F(k.)

A4=--CLa.(lanfh+(l+an_. n)fh-_-_2tanAkn

((l+a._(k.)_+'.la,,b._tanA)) . (42)

The coupling terms, due to the sweep effects, are
separated in the overall expressions of aerodynamic

derivatives. For A = 0 the expressions of aerodynamic

coefficients corresponding to straight wings are
obtained. The unsteady aerodynamic derivatives
recorded above coincide with the ones obtained

differently in Barmby et al. l, where the spanwise rates

of change of bending and twist, or and A,, that are

associated with the sweep effect, also intervene. When

specialized for 6r = 0, there coincide with the ones by

Bisplinghoff et al. 2

Aeroelastic Response of an Airfoil Featuring
Plunging and Pitching Coupled Motions to Sonic-
Boom Pressure Pulses.

An applications on the aeroelastic response of an airfoil

in an incompressible flow featuring plunging and
pitching coupled motions to sonic-boom and blast

pressure pulses will be given in the next developments.
The aeroelastic governing system of equations of an
airfoil featuring plunging and twisting degrees of

freedom to sonic-boom, blast pressure pulses, expressed
in dimensionless form, can be cast as:

¢ "(r )+ Z_,a"(r)+ 2(h (w--IV)_ "(r)

+(_/V)2¢(r)_lh(r)=lb(r) '
(43)

/ r2 "(r)+a"(r)+(2¢=iv )
+ Iv 2 (r)=0

(44)

In the above expressions this following dimensionless
parameters have been used:

l,,=l_,,blmU2 ; go,.= ,,,blmU;., V=U®lbw<,,

tx = mlsrPb 2 ; (,. = c,,12mo9,. ; _ = og_lwc. ;

a,_=(_U.,)"2; <o_=(K_II:J'2; (: =c=121<,w";

r==O=l,',b_l'_; zo=Solmb; mr,=M:a=Is=u_..

The dimensionless sonic-boom overpressure signature
of the N-wave shock pulse, can be described as follow:

Herein, the Heaviside step function H(r) has been

introduced in order to describe the typical pressure

time-history for blast or sonic-boom loads; 6 b is a tracer

American Institute of Aeronautics and Astronautics



thatshouldbetakenasonewhenthesonic-boomis
considered,andzerowhentheblastloadis included;
_,,denotesthedimensionlesspeakreflectedpressure
inexcessof theambientone;rr denotesthepositive
phasedurationof thepulsemeasuredfromthetimeof
impactof thestructure;r denotes the shock pulse

length factor. For r = 1 the N-shaped pulse degenerates
into a triangular pulse which corresponds to an
explosive pulse (Fig. 4.a), and for r = 2 a symmetric

N-shaped pulse is obtained. A depiction of lb/oeO,,,VS.

time is displayed in Fig. 4.b.
The Eqs. (43) and (44) can be converted in the Laplace

transformed space and solved for their unknowns,

_(-f (4)) and &(=_' (a)); inverted back in time

domain one obtain the plunging and pitching time-
histories and the load factor time-history due to

the sonic-boom pressure pulse, ¢(r)-_'-' {_(s)} and

a('r )-_T" {_(s)}, respectively.

When the dynamic response of the actively controlled
lifting surface is analyzed, also the feedback control

forces and moments, that are time dependent, have to
be included in the Eqs. (43) and (44). This will be
considered in the future work.

RESULTS AND DISCUSSION

Herein, an unified way enabling one to obtain the
unsteady lift and aerodynamic moment in the time and

frequency domains for swept aircraft wing was
developed. This was done via the use of the indicial
function approach. The time domain representation is

essential towards determination of the dynamic

aeroelastic response to time dependent external loads,
and in the case of the application of a feedback control
methodology, of the dynamic aeroelastic response to
both external time dependent loads and control forces.

The frequency domain representation is essential
towards determination of the flutter instability.
The unsteady aerodynamic derivatives for different

values of a, , A and CLa" have been plotted in Figs. 5

and 6, as a function of k,. For swept wings, the local

lift-curve slope CL,_, for sections normal to the elastic

axis are obtained from the aerodynamics of swept
wings (see Yatesl°).
The maximum influence of the corrective term

(identified by the tracer _r ) is present the first plunging

coefficients Ht where the aerodynamic coefficient

changes also its sign. Usually, for all coefficients, the

effect of these terms becomes higher for high sweep
angles.

For swept wings, the local lift-curve slope CL,,, for

sections normal to the elastic axis are expressed as:

CL_" = Co,_/cos A. (49)

The variation of the unsteady aerodynamic derivatives

/ti and /]_ as a function of k, are depicted. In these

developments, all the terms, including the aerodynamic

ones associated with h and 6_, usually neglected, have

been retained. As a result, the coefficients Hs, H 6 and

A_,A 6 are also included. Whereas the aerodynamic

coefficients /4j and /]2 are the principal uncoupled

aerodynamic damping coefficients in plunging and

torsion, respectively, /-)2 and /]_ are the coupled

damping coefficients. For straight wings, these terms

remains negative for all values of 2folk, and for

different values of aN, but for swept wings only /]2

continues to remain negative. The elastic axis position
is not involved in the expression of the unsteady

aerodynamic coefficients /-)_ and /-)4, a fact, which

clearly appears from the equations. The variation of the

aerodynamic derivatives as a function of k, is, in

general, a smooth one. Among these coefficients, only

/t2 features, with the variation of the reduced

frequency k,, a change of sign. As concerns, the

depiction of /ti and /], versus 2zr/k, (=U,/nbn), this

representation enables one to get an idea of the
variation of the respective quantity with that of the

normal freestream speed U,. The differences in the

unsteady aerodynamic coefficients induced by the
discard or inclusion of the terms generated from the
downwash velocity (i.e. that underscored by a solid line
in Eq. (12)) are properly indicated in Figs. 7. As shown,

the corrective term does not modify the trend of

coefficients /]1 and /]4 • It should be mentioned that the

expressions of the lift and aerodynamic moment in the

frequency domain obtained by Barmby, Cunningham
and Garrick I coincide with the ones obtained here via

indicial function approach.

The graphs depicting the aeroelastic response time-
history to blast pulses (i.e. explosive and sonic-boom

blasts) are displayed (Figs. 8 - 10). The graphs supply

the dimensionless plunging displacement (4-h/b),

and the load factor (N-h"/g, where g is the

acceleration of gravity). The predictions of _ and N

based on pure plunging and coupled plunging-twist
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models are depicted on the same plots, and the

closeness of the two predictions becomes apparent from
the graphs. Herein, the dotted and solid curves
correspond to pure plunging and coupled plunging-

pitch models, respectively. As a result, the coupling
helps to reduce the amplitude of the aeroelastic

response. The pitching displacement has its maximum
for "r= 0". The same trend is valid also for the load

factor N. It should be indicated that the response to

sonic-boom pressure pulse involves two different

regimes; one for which 0 < z"< 30" that corresponds to

the forced motion, and the other one to _" > 30"

belonging to the free motion. The jump in the time-

history of N is due to the discontinuity in the load

occurring at z= 30". This jump doesn't appear for
explosive pressure pulses, where r = I. The increase of

the mass ratio results in the increase of the plunging
displacement amplitude and the decrease of the pitching

amplitude. At the same time, for higher mass ratios, the
differences in the plunging predictions based upon
1DOF and 2 DOF disappear (Figs. 8 and 9). Moreover,
for higher mass ratios, the motion damps out at larger

times. Figs. 10 highlights the effect of the structural

damping coefficient in plunging and pftching.
Using the idea developed by Yates_U, a modified strip
theory can be accommodated as to address the problem

of the aeroelastic response (for open/closed loop
aeroelastic systems), by capturing also the 3-D effects.

Alternatively, an exact solution methodology enabling
one to determine both the flutter instability and the

aeroelastic dynamic response based on a double
Laplace transform, in time and space, can be used. Such
a method was devoted to the solution of aeroelastic

eigenvalue problems in Karpouzian & Librescu 5'6,

Librescu & Thangjitham 7. On this basis, the obtained

results can be extended as to approach the subcritical

aeroelastic response and flutter, respectively, of 3-D
advanced lifting surfaces, in various flight speed
regimes.

CONCLUSIONS

A unified treatment of the aeroelasticity of 2-D lifting
surfaces in time and frequency domains has been
presented and the usefulness in this context of the

aerodynamic indicial functions concept was
emphasized.

Applications assessing the versatility of this approach
enabling one to treat both subcritical aeroelastic

responses and flutter instability were presented,
and prospects for extending this treatment to 3-D
aeroelastic problems are contemplated in forthcoming
developments.
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